Characterization of magnetic reconnection in the high-energy-density regime.

نویسندگان

  • Z Xu
  • B Qiao
  • H X Chang
  • W P Yao
  • S Z Wu
  • X Q Yan
  • C T Zhou
  • X G Wang
  • X T He
چکیده

The dynamics of magnetic reconnection (MR) in the high-energy-density (HED) regime, where the plasma inflow is strongly driven and the thermal pressure is larger than the magnetic pressure (β>1), is reexamined theoretically and by particle-in-cell simulations. Interactions of two colliding laser-produced plasma bubbles with self-generated poloidal magnetic fields of, respectively, antiparallel and parallel field lines are considered. Through comparison, it is found that the quadrupole magnetic field, bipolar poloidal electric field, plasma heating, and even the out-of-plane electric field can appear in both cases due to the mere plasma bubble collision, which may not be individually recognized as evidences of MR in the HED regime separately. The Lorentz-invariant scalar quantity D(e) ≃ γ(e)j · (E + v(e) × B) (γ(e) = [1-(v(e)/c)(2)](-1/2)) in the electron dissipation region is proposed as the key sign of MR occurrence in this regime.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Magnetic Reconnection in High-Energy-Density Laser-Produced Plasmas1 WILLIAM FOX, Center for Integrated Computation and Analysis of Reconnection and Turbulence, University of New Hampshire Recent experiments have observed magnetic reconnection in high-energy-density, laser-produced plasma bubbles

Recent experiments have observed magnetic reconnection in high-energy-density, laser-produced plasma bubbles [1,2], with reconnection rates observed to be much higher than can be explained by classical theory. This is a novel regime for magnetic reconnection study, characterized by extremely high magnetic fields, high plasma beta and strong, supersonic plasma inflow. Reconnection in this regime...

متن کامل

بررسی شتاب‌دهی ذرات باردار از طریق باز‌اتصالی مغناطیسی در محیط‌های پلاسمایی

Magnetic reconnection, which occurs in high conducting plasmas, changes the topology of magnetic field lines and converts magnetic energy into the kinetic and thermal energy of plasma and also accelerates charged particles. This phenomenon plays an important role in changing the dynamic of laboratory and space plasmas such as fusion tokamaks and sun’s corona. The electric and magnetic fields ge...

متن کامل

Generation of Alfvén Waves by Small-Scale Magnetic Reconnection in Solar Spicules

Alfvén waves dissipation is an extensively studied mechanism for the coronal heating problem. These waves can be generated by magnetic reconnection and propagated along the reconnected field lines. Here, we study the generation of Alfvén waves at the presence of both steady flow and sheared magnetic field in the longitudinally density stratified of solar spicules. The initial flow is assumed to...

متن کامل

Fast Collisionless Reconnection Condition and Self-organization of Solar Coronal Heating

I propose that solar coronal heating is a self-regulating process that keeps the coronal plasma roughly marginally collisionless. The self-regulating mechanism is based on the interplay of two effects. First, plasma density controls coronal energy release via the transition between the slow collisional Sweet– Parker regime and the fast collisionless reconnection regime. This transition takes pl...

متن کامل

Experimental study of two-fluid effects on magnetic reconnection in a laboratory plasma with variable collisionality

This article describes the recent findings on two-fluid effects on magnetic reconnection in plasmas with variable collisionality in the magnetic reconnection experiment MRX M. Yamada et al., Phys. Plasmas 4, 1936 1997 . The MRX device has been upgraded to accommodate a variety of reconnection operation modes and high energy density experiments by increasing its capacitor bank energy and extendi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E

دوره 93 3  شماره 

صفحات  -

تاریخ انتشار 2016